蜜桃影像

Dr. Dian Wang

Dr. Dian Wang
Dr. Dian Wang蜜桃影像

Wehr Chemistry Building, 617

MilwaukeeWI53201United States of America
(414) 288-2076

Assistant Professor

Organic Chemistry, Catalysis

Education

Ph.D., University of Wisconsin-Madison

B.S., Peking University, China

Research Interests

New Modes of Bond Activation in Homogeneous Catalysis

Research in the Wang Lab involves catalyst development and mechanistic studies of new chemical transformations that have the potential to solve important problems directly related to pharmaceuticals, commodity chemicals, and renewable energy. In particular, we will focus on exploring new modes of chemical bond activation and their applications in organic synthesis and catalytic small molecule activation. Our approaches include (1) harnessing light-driven, excited-state reactivity of metal complexes for bond formations with new selectivity patterns, (2) leveraging the high modularity of transition metal catalysts for the fine tuning of the kinetics and thermodynamics of key bond-breaking steps, and (3) elucidating the mechanism of successful bond-activating strategies to provide guidance for the development of advanced catalysis.

 

 

GROUP MEMBERS

As of Summer 2024, our lab is composed of four graduate students and one undergraduate:

路 Abby Thillman (4th year)

路 Xi Chen (4th year)

路 Lakmini Edirisinghe (2nd year)

路 Ashan Wickramaarachchi (1st year)

路 McKenzie Stack (sophomore)

 

Professional Experience

Dian Wang was raised in Hefei, China. He obtained his B.S. degree in Chemistry from Peking University in 2011, and he obtained his Ph.D. degree in Organic Chemistry at the University of Wisconsin-Madison in 2017. His graduate work with Prof. Shannon Stahl focused on palladium-catalyzed aerobic C鈭扝 oxidations. He then conducted postdoctoral research at Princeton University under the direction of Prof. Robert Knowles and Prof. Paul Chirik, where he worked on ammonia synthesis using light-driven proton-coupled electron transfer. In August 2020, Dian came back to Wisconsin and joined the chemistry faculty at Marquette as an assistant professor.  

Selected Publications

Please see the full list on .

  1. Dian Wang, Chase A. Salazar, Shannon S. Stahl. Catalyst-Controlled Regioselectivity in Pd-Catalyzed Aerobic Oxidative Arylation of Indoles. .
  2. Dian Wang, Florian Loose, Paul J. Chirik, and Robert R. Knowles. N颅鈥揌 Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer.
  3. Florian Loose, Dian Wang, Lei Tian, Gregory D. Scholes, Robert R. Knowles, and Paul J. Chirik. Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: Stepwise proton coupled electron transfer is preferred over hydrogen atom transfer.
  4. Dian Wang,# Adam B. Weinstein,# Paul B. White, and Shannon S. Stahl. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions.
  5. Dian Wang and Shannon S. Stahl. Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)2 and Discovery of Fe(OTf)3 as a Highly Effective Cocatalyst.
  6. Yanbang Li, Gaihong Zhang, Dian Wang, Beidi Xu, Dan Xu, Ning Lou, and Liangbing Gan. Fullerene-Based Macro-Heterocycle Prepared through Selective Incorporation of Three N and Two O Atoms into C60.
  7. Dian Wang, Yusuke Izawa, and Shannon S. Stahl. Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates.
  8. Huan Huang, Gaihong Zhang, Dian Wang, Nana Xin, Sisi Liang, Nengdong Wang, and Liangbing Gan. Synthesis of an Azahomoazafullerene C59N(NH)R and Gas鈥怭hase Formation of the Diazafullerene C58N2.
  9. Changwu Zheng, Dian Wang, and Shannon S. Stahl. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions.

Chemistry Directory


CONTACT

Department of Chemistry

Todd Wehr Chemistry, 101
1414 W Clybourn St
PO Box 1881
Milwaukee, WI 53233
(414) 288-3515


Problem with this webpage?

Report an accessibility problem
Any other problem, contact muchem@marquette.edu.