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A relatively simple treatment using perturbation theory is proposed to describe spectrum of pseudoro-
tational states in cyclic-iN The purpose is to develop an analytical expression that could be used to
bt the experimentally determined spectrum of cyclig-hith purpose of identifying this molecule in

the laboratory and deriving parameters of its potential energy surface directly from the experimental
data. The perturbation theory expression derived in this work is used to bt the spectrum calculated
numerically in the previous work [D. Babikov and B. Kendrick, J. Chem. Ph$3.174310 (2010)].

Itis found that the second order of perturbation theory works well, giving a very good bt of the spec-
trum, with the rms deviation of only 0.26 ¢th Analysis reveals that important characteristics of

the potential energy surface, such as equilibrium geometry and pseudorotation barriers, are directly
related to the features of spectrum, such as splittings, and can be readily derived from experimental
data, when those become available.
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TABLE |. The spectrum (in cr?nl) of pseudorotational states in cyclicsiomputed numerically (from Re§) and its bt using analytical expressions of

various orders of the perturbation theaft is the residual deviation of the exact result from the bt.

Numerical Zeroth order First order Second order Third order

mand symmetry E E SE E SE E SE E SE
0 1310.65 1306.05 4.60 1306.05 4.60 1310.72 S0.07 1310.32 0.33
1/2¢ 1325.67 1324.66 1.01 1324.66 1.01 1325.54 0.13 1325.47 0.20

* 1364.95 1375.47 $10.52 1375.47 $10.52 1365.15 $0.20 1362.51 2.44
3/2 1401.22 1452.45 $51.23 1402.22 $1.00 1400.99 0.23 1405.88 S 4.66
3/25 1501.68 1452.45 49.23 1502.68 $1.00 1501.45 0.23 1503.38 $1.70

* 1560.68 1551.07 9.61 1551.07 9.61 1561.12 $0.44 1556.16 4.52
5/ 1668.88 1667.87 1.01 1667.87 1.01 1669.00 S$0.12 1669.46 $0.58
35 1787.52 1800.14 $12.62 1788.86 $1.34 1787.43 0.09 1788.02 $0.50
3* 1810.07 1800.14 9.93 1811.41 $1.34 1809.98 0.09 1810.58 $0.51
7/ 1944.56 1945.74 S$1.18 1945.74 $1.18 1944.14 0.42 1944.07 0.49
4% 2101.70 2102.97 $1.27 2102.97 $1.27 2102.25 $0.55 2101.71 $0.01
9/2 2269.93 2270.44 $0.51 2269.22 0.71 2269.84 0.09 2269.94 $0.01
9/25 2272.38 2270.44 1.94 2271.67 0.71 2272.29 0.09 2272.39 $0.01

conical intersectiod,described byS7 ¢  + 7. As the
pseudorotational motion encircles the conical intersection the
other two coordinatesy andg , change very little and remain
approximately equal to their equilibrium valuesq andgeq
(see Figl). Thus, the pseudorotational mode can be approx-
imately separated from the other two modes and the Hamil-
tonian of Eq.(1) can be transformed into the following one-
dimensional operator:

2
Hip = ZPES %—2 + V(eqs Geq, B, )
m @
where ZPE represents the zero-point energy of the breathing
and bending modes due to the brst two terms in the fully
dimensional expression of E@l). Here we focus on the
pseudorotational excitation with no breathing and/or bending
excitation, so the ZPE is just a constant number. It can be eas-
ily estimated from the numerical results of RBf.Using the
harmonic oscillator model for the brst excited breathing and
bending states of cyclic-\ we obtain ZPE= 1182.3 cnmi.
Using a more sophisticated six-parameter Dunham expansion
for these two modes gives the value just slightly higher: ZPE
= 1202.1 cmyt.
Note that in Eq(2) we introduced thg@seudorotational
moment of inertiaas
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are present in the expansion of K§), the splitting occurs
only form= 3/2, 3, 9/2, etc., states.

Analysis of the spectrum presented in Tab&hows that
the prst order of perturbation theory is qualitatively consis-
tent with the numerical results. The values of splittings are
Aszp = 100.46 cmil, A3 = S 22.55, andAg, =
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individual states, while the brst-order correction gives only
the mrindependent shift of the entire zeroth-order spectrum
by a constant number. Note that the second-order correction
affects the splittings of states with integer valuesrobnly,

i.e., affects only the splittings of the BO states.

D. Third-order correction

The third order of theory uses ideas of the brst and second
orders. For the purpose of brevity we skip the derivations and
give the Pnal result
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