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We developed an efficient approach to study the coherent control of vibrational state-to-state
transitions. The approximations employed in our model are valid in the regime of the low
vibrational excitation specific to the vibrational quantum computer. Using this approach we explored
how the vibrational properties of a two-qubit system affect the accuracy of subpicosecond quantum
gates. The optimal control theory
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simultaneously by the same single laser pulse, which is re-
quired in order



II. THEORY

As usual, the evolution of the vibrational wave function
satisfies



Mkl,ij = (0)k%i&Q1
)l%j&Q2

+ (1)k%Q1%i&Q1
)l%



low vibrational excitation regime. Note that the OH molecule
is not a simple case and these benchmark calculations repre-
sent a really tough test of approximations used in our model
because the OH molecule is very anharmonic. This case is
also very important since the value of "=90 cm−1 belongs to
the high fidelity plateau and allows us to obtain very accurate
subpicosecond quantum gates.

III. RESULTS AND DISCUSSION

As explained in the previous section, we vary the values
of "1, "2, and "12 in the range from 40 to 120 cm−1 using
10 cm−1 step sizes, perform the pulse optimization for
CNOT gate, and compute the pulse fidelity F for each con-
sidered case. Overall, we performed optimizations on a 9
%9%9 three-dimensional grid in the !"1 ,"2 ,"12" space, for
729 sets of parameters in total, and constructed an accurate
three-dimensional !3D"-spline interpolation of F between the
calculated points. Thus, the fidelity F can





tions along the second !target" mode. These are presented in
Figs. 5!a"–5!c" for the three sets of !"1 ,"2 ,"12" discussed in
the previous paragraph. A striking feature of these systems
becomes immediately obvious: The frequencies of %i , j&
→ %i , j+1& transitions for j-1 coincide with the frequencies

of %i+1, j−1&→ %i+1, j& transitions. Note that for j-2 they
also coincide with the frequencies of %i+2, j−2&→ %i+2, j
−1& transitions, and so on. In Fig. 6!a" the sets of equivalent
arrows are used to indicate different state-to-state
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mula defines a plane in !"1 ,"2 ,"12" space. Such a plane is
parallel to the "1 axis and is perpendicular to the !"2 ,"12"
plane. All the lowest fidelity points in the Fmin/0.5 region
either belong to this plane or are found very close to it,
which is clearly seen in Fig. 4!a". Further analysis shows that
in the vicinity of this plane, ±5 cm−1, the fidelity F slightly
increases but still remains very poor in the range of Fmin
/0.60–0.65. Clearly, the lowest fidelity plane !12" and its
vicinity should be avoided when choosing a candidate mol-
ecule for quantum computation.

C. A1/A2 plane

The other prominent feature of the data cube is a plane
in the middle of the high fidelity A region where the value of
F drops abruptly to F/0.985 and below. This feature is
illustrated in Fig. 4!b" using data cropping with an F
$0.987 window. It is seen very clearly that this region of
lower fidelity is roughly planar, occupies the space near the
diagonal line of the !"2 ,"12" plane, and extends through the
entire range of "1. Three typical points from this area are
!"1 ,"2 ,"12"= !40,50,50 cm−1", !50,90,90 cm−1", and
!60,115,115 cm−1". The last point is especially surprising,
because at this point both important anharmonicity param-
eters become very large, "2 and "12=115 cm−1, but the fi-
delity remains relatively low, F=0.984. The transition fre-
quency diagrams for these three points are given in Fig. 7

and even a quick look at these pictures reveals a number of
resonant frequencies. Namely, the frequencies of %i , j&
→ %i , j+1& transitions for j-1 coincide with the frequencies
of %i+2, j−1&→ %i+2, j& transitions. A scheme is given in Fig.
6!b" in order to explain this effect. Although this scheme is
somewhat similar to that shown in Fig. 6!a", there are two
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"12 = "2. !13"

This formula also defines a plane in the three-dimensional
!"1 ,"2 ,"12" space and again it is parallel to the "1 axis and
is perpendicular to the !"2 ,"12" plane. This A1/A2 plane is
clearly seen in Fig. 4!b". Although the



effect is given in Fig. 6!c". Here one of the transitions in the
target qubit, %10&→ %11&, is in resonance with the %10&
→ %



rameters are as small as possible
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